翻訳と辞書 |
Plasmonic cover : ウィキペディア英語版 | Theories of cloaking
Theories of cloaking discusses various theories based on science and research, for producing an electromagnetic cloaking device. Theories presented employ transformation optics, event cloaking, dipolar scattering cancellation, tunneling light transmittance, sensors and active sources, and acoustic cloaking. A cloaking device is one where the purpose of the transformation is to hide something, so that a defined region of space is invisibly isolated from passing electromagnetic fields (see Metamaterial cloaking〔 〕〔) or sound waves. Objects in the defined location are still present, but incident waves are guided around them without being affected by the object itself. Along with this basic "cloaking device", other related concepts have been proposed in peer reviewed, scientific articles, and are discussed here. Naturally, some of the theories discussed here also employ metamaterials, either electromagnetic or acoustic, although often in a different manner than the original demonstration and its successor, the ''broad-band cloak''. ==The first electromagnetic cloak== The first electromagnetic cloaking device was produced in 2006, using gradient-index metamaterials. This has led to the burgeoning field of transformation optics (and now transformation acoustics), where the propagation of waves is precisely manipulated by controlling the behaviour of the material through which the light (sound) is travelling.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Theories of cloaking」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|